

jSNMP Enterprise
Version 3.2

Java-based SNMP Package

User’s Guide

Simplified SNMP Service for the Enterprise

 jSNMP Enterprises

jSNMP Enterprise
 User’s Guide

The software described in this book is furnished under a license agreement and may be used only in
accordance with the terms of the agreement.

Copyright Notice
Copyright 2003 jSNMP Enterprises

All Rights Reserved Worldwide

This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form, other than the form delivered
directly from jSNMP Enterprises, without the prior consent in writing from jSNMP
Enterprises, 829 Quail Court, Arroyo Grande, CA 93420.

ALL EXAMPLES WITH NAMES, COMPANY NAMES, OR COMPANIES THAT
APPEAR IN THIS MANUAL ARE IMAGINARY AND DO NOT REFER TO, OR
PORTRAY, IN NAME OR SUBSTANCE, ANY ACTUAL NAMES, COMPANIES,
ENTITIES, OR INSTITUTION. ANY RESEMBLANCE TO ANY REAL PERSON
COMPANY, ENTITIES, OR INSTITUTION IS PURELY COINCIDENTAL.

Every effort has been made to ensure the accuracy of this manual. However, jSNMP
Enterprises makes no warranties with respect to this document and disclaims any implied
warranties of merchantability and fitness for a particular purpose. jSNMP Enterprises shall not
be liable for any errors or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual or the examples herein. The information in this
document is subject to change without notice.

Trademarks
jSNMP Enterprises, jSNMP, jSNMP Enterprise, and jMIBC are trademarks or U.S. registered
trademarks of jSNMP Enterprises.

Other product names mentioned in this manual may be trademarks or registered trademarks of
their respective companies and are the sole property of their respective manufactures.

Credits and Acknowledgments
Specials thanks to the following people who contributed to the success of this project:

Jim Pickering, Jay Chalfant, Amanda Goldner, Wes Strickland, Jim Mortensen, Beckie
White, Mike Chuises, Henry Hernandez, Miles Clark, Garrett Conaty, Rick James, Gary
Baker, and Chris Brannan.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. ii

Contents

INTRODUCTION ..1
DESCRIPTION OF JSNMP ENTERPRISE...1
TARGET AUDIENCE ...2

INSTALLATION ...3
REQUIREMENTS...3
INSTALLATION...3
SETTING CLASSPATH...3

USING JSNMP..4
OVERVIEW ..4
INITIALIZATION ...5
CONFIGURATION ...5
VARIABLE BINDINGS...6
SNMPCUSTOMER ...6
USER-INITIATED REQUESTS ..6
USER-INITIATED NOTIFICATIONS ..9
AGENT-INITIATED NOTIFICATIONS..9
MIBS...12

SNMP TO JAVA MAPPING...13
VERSIONS OF SNMP SUPPORTED..13
SNMP OPERATIONS..13
BASIC DATA TYPES ..13

CORE EXAMPLES ...15
OVERVIEW ..15
JAVA APPLICATIONS..15

Building ..15
Applications..15

JAVA APPLETS...19
RMI INTEGRATION ...21

INTRODUCTION..21
RMISnmpServer..21
RMISnmpClient ..21
Test Applets ..21

RMI SERVER...21
Requirements ..21
Use..23

RMI CLIENT..23
Requirements ..23
Use..23

RMI EXAMPLES ..26
OVERVIEW ..26
JAVA APPLICATIONS..26

Building ..26
Applications..26

JAVA SERVER ..26
Building ..26

Copyright 2003 jSNMP Enterprises, All Rights Reserved. iii

Running ..27
JAVA APPLETS...27

CORBA INTEGRATION ...28
INTRODUCTION..28
PREREQUISITES ...28
CORBA SERVER...28

Requirements ..28
Use..29

CORBA CLIENT (NON-JAVA) ...29
CORBA JAVA CLIENT ..29

Requirements ..29
Use..30

CORBA EXAMPLES ..31
OVERVIEW ..31
JAVA APPLICATIONS..31

Building ..31
Applications..31

JAVA SERVER ..33
Building ..33
Running ..33

JAVA APPLET ..33
ERROR MESSAGES ...35

Invalid PDUs..35
Socket Failure...35
Low Memory Conditions ..36
Fatal Errors..36
CORBA/RMI Errors ...36

ADDITIONAL RESOURCES..37

FIGURE 1: JSNMP INSTALLED DIRECTORY STRUCTURE ...3
FIGURE 2: OVERVIEW OF JSNMP OPERATIONAL FLOW..4
FIGURE 3: SNMP TO JAVA DATA TYPE MAPPING USED BY JSNMP..13
FIGURE 4: ADDITIONAL RESOURCES ...37

Copyright 2003 jSNMP Enterprises, All Rights Reserved. iv

jSNMP Enterprise

Java-based SNMP Package
User’s Guide
Simplified SNMP Service for the Enterprise

Introduction

This manual provides the reader with information about the design, installation and use of the jSNMP
Enterprise package. It contains both conceptual information as well as step-by-step examples. Topics
include a design overview, installation, initialization and configuration, usage, SNMP to Java
mapping, and distributed deployment. Everything you need to understand and take full advantage of
jSNMP Enterprise is included.

Description of jSNMP Enterprise
jSNMP Enterprise provides application developers a cross-platform means of communicating with
SNMP devices and services. The jSNMP API provides a clean, high-level interface to SNMP protocol
operations in Java. The same API is also available through Java RMI (Remote Method Invocation) to
support application development in distributed environments. Below we address the benefits of the
jSNMP interfaces common to all implementations.

Traditional SNMP SDKs require the user to manually construct SNMP request packets. The interfaces
of jSNMP, however, allow the user to communicate with SNMP agents by specifying object IDs of
interest rather than worrying about the intricacies of SNMP like the Basic Encoding Rules (BER) or
Protocol Data Unit (PDU) format. In addition, jSNMP has been optimized for minimizing network
traffic and maximizing efficiency. jSNMP supports caching of recently retrieved results, combines
multiple requests to the same agent into a single network packet, and detects duplicate requests. If a
request is made for information that is currently being retrieved, jSNMP will not waste an extra packet
to get the information. Instead, jSNMP will tie the two requests together, returning the SNMP result
to both requesters. Finally, jSNMP optimizes the ASN.1 encoding/decoding layer by eliminating data
copying in constructing and parsing SNMP packets.

To support distributed development and n-tier architectures, jSNMP Enterprise includes RMI
interfaces to the jSNMP service. The jSNMP RMI services use the same optimizations described
above and scale to support many clients concurrently. Additionally, jSNMP Enterprise includes a Java
implementation of the jSNMP RMI client. The Java RMI client exposes the same jSNMP interface as
the local Java interface. This design strategy provides two important benefits. First, it allows the Java
developer to use the same interfaces for both local and remote calls to jSNMP services. Second, it
shields the Java developer from the intricacies of RMI development. Thus, the jSNMP Enterprise
developer can build distributed SNMP applications based upon the RMI standard with a minimal
investment in training.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 1

Target Audience
The developer does not need to be an expert in SNMP to develop software with jSNMP Enterprise.
jSNMP was designed from the ground up to be simple to use and appeal to the Java developer with
only a minimum of SNMP exposure. The developer doesn't need experience in constructing SNMP
requests and other low-level protocol details. Developers should be familiar with the concept of an
Object Identifier (OID) for referencing data. In addition, developers should be comfortable with the
Management Information Base (MIB) structures for describing the data to be managed. To use the
RMI facilities of jSNMP Enterprise, the developer need not to be fluent in RMI development.
However, the developer should be comfortable using the RMI deployment environments and
development tools.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 2

Installation

Requirements
jSNMP Enterprise requires a JDK 1.1.x or later compatible development and runtime environment.
To support DES encryption in SNMPv3 requests, a Java Cryptography Extension (JCE) must be
installed along with a JDK 1.2.1 or later compatible development and runtime environment. If the
encryption feature of SNMPv3 is not used, a JCE is not required. The additional RMI interfaces
require a JDK 1.2.x or later compatible development and runtime environment or any other Java
development and runtime environment with RMI support. An RMI development environment is not
required for local operation.

Installation
After downloading jSNMP Enterprise, the distribution file should be uncompressed. The resulting
directory structure should look like the following:

Location of user’s guide, license, readme, and FAQs
Location of Javadocs
Location of example source code

 Location of the JAR files containing the Java classes
Figure 1: jSNMP Installed Directory Structure

Setting CLASSPATH
The core jSNMP service implementation is provided in the file jSNMP.jar, which is located in the
lib subdirectory under the jSNMP Enterprise home directory. In order to incorporate the local jSNMP
services into a Java application, the developer must set the CLASSPATH environment variable to
include this JAR file. For example, this could be accomplished with the following command:

CLASSPATH=C:\jSNMP\lib\jSNMP.jar;%CLASSPATH%

for Win32 systems, or

CLASSPATH=/jSNMP/lib/jSNMP.jar:$CLASSPATH; export CLASSPATH

for Unix systems.

For detailed instructions on CLASSPATH settings for RMI environments, see the section RMI
Integration. For detailed instructions on CLASSPATH settings for CORBA environments, see the
section CORBA Integration.

NOTE: including more than one of the jSNMP JARs in the CLASSPATH will result in
unpredictable behavior when using jSNMP

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 3

http://java.sun.com/products/jce/index-14.html

Using jSNMP

Overview
jSNMP provides a natural object-oriented interface to low-level SNMP functions. The encapsulated
SNMP operations are divided into three functional areas: user-initiated requests (get, get-next, get-
bulk, set, reports), user-initiated notifications (traps, informs), and agent-initiated notifications (traps,
informs). Each component is accessed through the interface SnmpService.

User-initiated requests are supported via asynchronous interfaces. A common analogy is the business
model of Customers and Orders. A customer is the entity that places orders and receives goods when
the order is complete. However, the customer does not need to wait at the counter while the order is
being filled. The SnmpService in this case acts as a virtual store and delivery agent, which receives
orders, processes them, and delivers the results back to the customer.

This strategy, asynchronous completion, allows the programmer to complete network calls with
potentially large latency without ever blocking. This benefit is so compelling that asynchronous
completion is the sole method used for user-initiated requests.

Agent-initiated notifications, on the other hand, follow the publish-subscribe paradigm. Interested
parties subscribe to the SnmpService with various subscription parameters. On receipt of an agent-
initiated notification (trap, inform), the SnmpService will check if the notification matches a
particular subscriber’s profile and, if so, publish that notification to the subscriber.

Figure 2: Overview of jSNMP Operational Flow

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 4

Initialization
A reference to SnmpService is needed in order to use jSNMP in an application. This is
accomplished by using the class SnmpLocalInterfaces whose static method getService()
will obtain a reference to the service. Only one implementation of this service will be created per Java
virtual machine - repeated calls to getService() will always return the first instance.

Configuration
Configuration of the SnmpService can be done either by using the supplied
SnmpServiceConfiguration interface, or by setting appropriate System properties. The
following configuration options are available:

• socketBufferSize - the socket send and receive buffer sizes; default=dependent on Java VM

• bufferDelay - the amount of time in milliseconds the Shipper delays to accomplish PDU
packing; default=20

• clerkThreadPool - the number of threads available for order delivery; default=10

• retrieveTimeStamps - add a sysUpTime request to every get/get-next request and return time
stamps in returned varbind; default=false

• retryPackedTimeouts - if a packed PDU times out, break it up into multiple unpacked (single
varbind) PDUs and retry with those; default=false

• trapQueueCapacity - the initial size of the system trap queue; default=1000

• trapQueueExpansion - the expansion size of the system trap queue; default=500

• cachePrunePeriod - the period of the cache cleanup thread in seconds; default=30

• cacheExpireFactor - a variable factor used during cache cleanup; larger values => larger
caches; default=2

• cacheExpireFloor - the minimum lifetime of a cacheable object in seconds; default=60

• properties - dump all of the configuration parameters and exit

• maxClerks - the maximum number of clerks (request OIDs per non-atomic request PDU);
default=25

• ignoreV1V2PduSizeLimit - ignore the 484 byte PDU size limit when sending SNMPv1 and
SNMPv2 packets; set the PDU size limit to the socket send/receive buffer size (see
"socketBufferSize"); default=false

• forceGC - forces garbage collection at the end of every cache cleanup; default=false

• dumpPackets - dump incoming and outgoing packets; the system property "outback.trace"
must also be set to "trace"; default=false

• cacheDisable - turn off the cache of retrieved OID values; conserves memory

• loadRFC1213MIB - whether the RFC1213 MIB will be loaded by the SimpleMIBService;
the SimpleMIBService will use less memory with this option disabled; default=true

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 5

Most configuration options are geared to performance tuning, and in most cases the default
configuration will be fine. See the jSNMP Javadocs for details.

Variable Bindings
All data retrieved by jSNMP from an SNMP agent will be encapsulated in a SnmpVarBind object.
The SnmpVarBind class provides a generic way to return the various ASN.1 types used by SNMP.
All successful results from user-initiated requests will be an instance of the class SnmpVarBind. In
addition, SNMP notifications sent by a remote agent may contain optional information as a sequence
of objects. Each of these objects will be encapsulated by the SnmpService as a SnmpVarBind.
The methods provided by SnmpVarBind to access the returned data are as follows:

getTimeStamp() // returns the timestamp which corresponds to
 // the agent sysUpTime.0 value when the varbind
 // was retrieved from the agent, expressed in
 // seconds
getName() //returns the object ID (OID) representing the data
getType() //returns the ASN.1 type of the data
getValue() //returns the actual value of the data
getStringValue() //returns the value of the data as a String

See the section SNMP to Java Mapping for definition of the types returned.

SnmpCustomer
An instantiated SnmpCustomer object represents the customer mentioned in the overview.
SnmpCustomers are guaranteed to receive a result for all orders placed. Orders are delivered to the
SnmpCustomer via the following callback methods:

deliverSuccessfulOrder()
deliverFailedOrder()

If the order was successful, a SnmpVarBind will be delivered. Because the results of all user-
initiated requests are delivered asynchronously, the SnmpCustomer must associate a number with
each order placed to act as a tag to associate delivered replies with the original request as discussed
below. If the order was not successful, an error code representing the failure will be delivered. See
the description of SnmpConstants in the jSNMP Javadocs for more details on error codes.

User-Initiated Requests
User-initiated requests are made by one of the following methods:

placeGetOrder()
placeGetNextOrder()
placeGetBulkOrder()
placeSetOrder()
placeReportOrder()

An important parameter in each of these methods is iOrderNumStart. This parameter identifies the
first iOrderNum to be sent in the corresponding SnmpCustomer callbacks discussed above. For
example, if the user calls placeGetOrder()with a single OID and iOrderNumStart equal to 1, the
SnmpService will call an SnmpCustomer callback method once with the value of 1. If the user were
to include three OIDs in the placeGetOrder(), the SnmpService will call an SnmpCustomer
callback method three times with the values of 1, 2, and 3.

Note: it is not guaranteed that callbacks will occur in order

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 6

It is the responsibility of the user and, in particular, of the SnmpCustomer implementation to
provide for unique iOrderNum’s and to map the responses received through the callbacks onto
appropriate application logic. As a convenience to the programmer, a successful call to any of the
above methods will return with a value which can be used as the next iOrderNumStart for succeeding
placeXXXOrder() calls. For example, if iOrderNumStart was 55 and there were 5 OIDs in the
szOIDs argument of a placeGetOrder(), then the successful placeGetOrder() would return
60.

The general process for using one of these methods is quite simple. First, create the
SnmpOrderInfo, SnmpSecurityInfo, and SnmpAuthoritativeSession objects
appropriate for the targeted agent. These objects store network and security parameters and can be
reused by the programmer across multiple requests. They relieve the programmer of having to specify
host, port, timeouts, password, etc. on every request.

With these objects instantiated, call one of the placeXXXOrder() methods listed above. When the
order completes, the SnmpCustomer supplied in the placeXXXOrder() will be called. This is
where the application logic continues after the placeXXXOrder() has been called. In order to
retrieve the results of the placeXXXOrder() call, the programmer must provide a meaningful
implementation of the SnmpCustomer interface.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 7

As an example, the following code demonstrates how to place an order for the MIB-2 variable
sysName to a SNMPv1 agent:

SnmpService cService;
SnmpOrderInfo cOrderInfo;
CSMSecurityInfo cSecurityInfo;
SnmpAuthoritativeSessionFactory cAuthoritativeSessionFactory;
SnmpAuthoritativeSession cRemoteAuthoritativeSession;
…

//Set the OID we want to retrieve
String[] szOIDs = new String[1];
szOIDs[0] = "sysName.0";

//Initialize the SNMP Service
cService = SnmpLocalInterfaces.getService();

//Specify order details..
//timeout, retries, cache threshold
cOrderInfo = new SnmpOrderInfo(2, 3, 0);

//read community, write community
cSecurityInfo = new CSMSecurityInfo("public", "");

cAuthoritativeSessionFactory =
 SnmpLocalInterfaces.getAuthoritativeSessionFactory();

cRemoteAuthoritativeSession =
 cAuthoritativeSessionFactory.createRemoteAuthoritativeSession(szHost,
 161,

SnmpConstants.SNMP_VERSION_1,
cSecurityInfo);

//Place the order!
int iOrderNumStart = 1;
cService.placeGetOrder(cRemoteAuthoritativeSession,
 cOrderInfo,
 true,

szOIDs,
this,
iOrderNumStart);

Note that the order specifies this as the SnmpCustomer callback interface. Here is an example of the
deliverSuccessfulOrder() implemented in the object that made the call:

public void deliverSuccessfulOrder(int iOrderNum,
 SnmpVarBind cSnmpVarBind)
{

System.out.println("SysName.0 = " +
 cSnmpVarBind.getStringValue());

cSnmpService.stop();
System.exit(0);

}

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 8

The example code above is provided for demonstration purposes only and leaves out some relevant
detail. See a full example in ~/examples/SnmpV1GetSysInfo.java.

NOTE: a placeReportOrder() call will result in a callback through the
SnmpCustomer.deliverFailedOrder() method, as SNMPv2 REPORTs are not currently
defined to require responses

User-Initiated Notifications
User-initiated informs are made by the placeInformOrder() method, and user-initiated traps are
made by the placeTrapOrder() method.

A call to the placeInformOrder() method requires the same type of arguments and behaves like
one of the user-initiated methods above. That is, it will immediately return the next iOrderNumStart
upon success or 0 if a parameter is invalid. The successful returned value will be the next value to use
as iOrderNumStart for succeeding placeXXXOrder() calls.

When the operation completes, the SnmpService will callback on the SnmpCustomer interface
supplied with the order.

Note: the placeInformOrder() method will fail if the cSnmpAuthoritativeSession
argument is a SNMPv1 session, the argument iTrapNum is less than zero, the
szEnterpriseOID argument is null and the iTrapNum argument does not equal one of the
generic traps, or any parameter is invalid

Unlike the placeInformOrder() method, the placeTrapOrder() method will not make a
SnmpCustomer callback, as remote receiving trap entities do not respond to traps.

Agent-Initiated Notifications
Traps and informs are generated by remote SNMP agents in response to certain conditions such as
rebooting the machine. jSNMP acts as a broker for these incoming notifications, publishing them to
the appropriate subscribers. The primary interfaces and objects involved in notification operations are
the SnmpTrapEvent, SnmpTrapProfile, SnmpTrapListener, and the SnmpService. In
brief, the developer creates a SnmpTrapProfile, modifies it to match the traps for which
notification is desired, and then registers it along with an SnmpTrapListener to the
SnmpService.

Once registered, the SnmpService will forward SnmpTrapEvents to all listeners whose profile
matches the notification generated. A SnmpTrapProfile object corresponds to the subscription
parameter in the publish-subscribe paradigm. SnmpTrapEvents created by the SnmpService
will be checked against each SnmpTrapProfile. If the event matches a profile, the event will be
delivered to the appropriate subscriber. A subscriber of SnmpTrapEvents is represented by the
interface SnmpTrapListener. The interface has one method:

trapReceived()

The implementation of this method is provided by the developer and should execute the business logic
associated with the receipt of a trap.

To begin, the developer must create an SnmpTrapProfile. SnmpTrapProfiles are created
from a SnmpTrapProfileFactory. The local SnmpTrapProfileFactory may be obtained
from the SnmpLocalInterfaces method getTrapProfileFactory(). Next, if notification
for only a subset of traps is desired, the SnmpTrapProfile must be manipulated to specify the
appropriate filter. SnmpTrapProfile uses the following methods to define notification filters:

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 9

addTrapSession()
addInformSession()
addTrapInform()
removeTrapSession()
removeInformSession()
listTrapSessions()
listInformSessions()
removeTrapInform()
removeTrapInform()
removeTrapsInforms()
listTrapInformTypes()
listEnterpriseOIDs()

Finally, a developer wishing to direct notifications to a SnmpTrapListener interface must register
that interface with the SnmpService. The SnmpService uses the following methods for
managing TrapListener registrations:

addTrapListenerProfile()
removeTrapListenerProfile()
listTrapListenerProfiles()
removeTrapListener()

The SnmpService creates a SnmpTrapEvent object for every notification it receives. This object
contains all the information present in the low-level trap notification and is delivered to the
SnmpTrapListener by the trapReceived() call. The contents of the SnmpTrapEvent are
accessible through the following methods:

getType() // returns notification type, either
 // SnmpConstants.SNMP_TRAPV1,
 // SnmpConstants.SNMP_TRAPV2,
 // or SnmpConstants.SNMP_INFORM
getPort() // returns port notification received on
getEnterpriseOID() // return enterprise OID of notification
getAgentIPAddress() // returns IP address of notification
 // agent
getSendersIPAddress() // returns IP Address of the sender of trap's
 // datagram packet
getSession() // returns session of notification agent
getTimeStamp() // returns notification time stamp
getTrapType() // returns notification trap type
getNumberOfVarBinds() // returns number of varbinds in
 // notification
getVarBind() // returns specific varbind in notification
isGeneric() // returns true if the trap is “generic”
 // (the Enterprise OID is 1.3.6.1.6.3.1.1.5)

Since all traps that match the SnmpTrapProfile associated with this SnmpTrapListener will
be returned to the same instance of trapReceived(), that implementation may need to query the
SnmpTrapEvent to determine the specific trap received. SNMP standards are somewhat
inconsistent regarding the trap type definition for “Generic” versus “Specific” traps. In jSNMP, traps
are based upon the SNMPV2 trap specification (RFC 1905 - Protocol Operations for Version 2 of the

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 10

Simple Network Management Protocol). That is, all traps are specified by an enterprise OID and trap
code. The generic SNMPV1 traps, coldStart, warmStart, linkDown, linkUp, authenticationFailure, and
egpNeighborLoss, are converted to traps with an enterprise OID of 1.3.6.1.6.3.1.1.5 and
corresponding trap codes of 1, 2, 3, 4, 5, and 6 (see RFC 2576 - Coexistence between Version 1,
Version 2, and Version 3 of the Internet-standard Network Management Framework). The SNMPv1
deprecated getGenericTrapType and getSpecificTrapType methods have been superceded by the
getTrapType method, but will work as before.

Let’s consider a simple example application for monitoring notification information. In this case,
remote SNMP agents will generate a coldStart trap when started. Thus, since we want to be notified
of coldStart traps, we must implement a SnmpTrapListener for the coldStart trap. The following
code demonstrates how the application would register itself with the SnmpService to receive the
coldStart trap:

// The SnmpService (assumed to have been initialized).
SnmpService cService;

// Implementations of the following interface
// is user-specific.
SnmpTrapListener cTrapListener;

// Obtain the factory for creating profiles
SnmpTrapProfileFactory cTrapProfileFactory =
 SnmpLocalInterfaces.getTrapProfileFactory();

// Create the trap profile that will be triggered
// whenever an agent is booted.
SnmpTrapProfile cTrapProfile =
 cTrapProfileFactory.createSnmpTrapProfile(162);

// The profile initially matches any notification, but after adding
// the following line, we restrict it to only match a notification
// which is a “coldStart”.
cTrapProfile.addTrapInform("1.3.6.1.6.3.1.1.5",
 newInteger(SnmpConstants.TRAP_COLD_START.intValue() + 1));

// Register the profile with the appropriate Listener.
cService.addTrapListenerProfile(cTrapListener, cTrapProfile);

// Now, whenever the “coldStart” trap is received by the
// cService, the cTrapListener listener will be notified.

NOTE: the remote SNMP agent must be configured to deliver traps to the host machine
on which the jSNMP service is running; when using the RMI or CORBA components, the
service runs on the server; traps should not be sent to the client

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 11

MIBs
The SnmpMIBService provides translation to/from OIDs and common names and provides retrieval
of an OID’s access, status, description, type, and ‘abstract’ type. It also performs translation to/from
enumerated values and strings. The SnmpMIBService is precompiled with knowledge of
RFC1213-MIB (MIB II). If you want to use the SnmpMIBService with other MIBs, you must
either provide the appropriate MIBs or provide precompiled jmib dictionary files appropriate to
those MIBs. jSNMP Enterprise includes jMIBC, a Java-based MIB Compiler, which produces .jmib
dictionary files from MIBs. See the jMIBC User’s Guide included in this distribution for more
information. The sample HOST-RESOURCES MIB and its dependent MIBs are included in the
examples directory of the distribution.

There are two interfaces associated with the MIB service: SnmpMIBService and
SnmpMIBDictionary. SnmpMIBService is the store of multiple SnmpMIBDictionaries,
each of which represent a single MIB. For a complete description of the interfaces, see the Javadocs.
An overview of the primary APIs is provided below.

// load a MIB so we can request by name
SnmpMIBService cMIBService = SnmpLocalInterfaces.getMIBService();
InputStream cInputStream = jMIBC.loadMib("HOST-RESOURCES-MIB.my");
cSnmpMIBService.loadMIB("HOST-RESOURCES-MIB", cInputStream);
// Or alternately, load the HOST-RESOURCES-MIB jMIB file into the service
//cSnmpMIBService.loadMIB("HOST-RESOURCES-MIB",
// new FileInputStream("HOST-RESOURCES-MIB.jmib"));

We can now request OIDs by name instead of by number (e.g., hrSystemUptime.0). We can also map
the enumerated values returned onto the strings as defined in the MIB. For example:

// convert enumerated value to a string
SnmpMIBDictionary cMIBDictionary =
 cMIBService.getMIBDictionary("HOST-RESOURCES-MIB");
String szEnumValue =
 cMIBDictionary.resolveEnum("hrDeviceStatus", 2);

We can also retrieve the string representation of an OID’s access, status, description, type, and
‘abstract’ type as defined in the MIB. For example:

// get access, status, description, type and ‘abstract’ type by
// object name
SnmpMIBDictionary cMIBDictionary =
 cMIBService.getMIBDictionary("HOST-RESOURCES-MIB");
String szAccess =
 cMIBDictionary. resolveNameAccess ("hrDeviceStatus");
String szStatus =
 cMIBDictionary. resolveNameStatus ("hrDeviceStatus");
String szDescription =
 cMIBDictionary. resolveNameDescription ("hrDeviceStatus");
String szType =
 cMIBDictionary. resolveNameType ("hrDeviceStatus");
String szAbstractType =
 cMIBDictionary. resolveNameAbstractType ("hrDeviceStatus");

For a complete example that uses the SnmpMIBService for MIB translation, see
SnmpV1GetSysInfo.java in the examples directory.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 12

SNMP to Java Mapping

Versions of SNMP Supported
jSNMP Enterprise currently implements the entire SNMPv1, v2c, & v3 specifications.

SNMP Operations
The following table shows the SNMP operations supported by jSNMP by SNMP version:

jSNMP API SNMP Operation V1 v2 v3
PlaceGetOrder() GET x x x
PlaceGetNextOrder() GETNEXT x x x
PlaceGetBulkOrder() GETBULK x x
PlaceSetOrder() SET x x x
PlaceInformOrder() INFORM x x
PlaceTrapOrder() TRAP x x x
PlaceV1TrapOrder() TRAP x
PlaceReportOrder() REPORT x x

Figure 3: SNMP to Java Request Type Mapping used by jSNMP

Basic data types
The following table shows the mapping of SNMP data types to Java:

ASN.1 Java
NULL Null

INTEGER and Integer32 java.math.BigInteger

OCTET STRING byte[]

Opaque byte[]

IpAddress java.lang.String

OBJECT IDENTIFIER java.lang.String

Counter and Counter32 java.lang.Long

Gauge, Gauge32, and
Unsigned32

java.lang.Long

TimeTicks java.lang.Long

Counter64 java.math.BigInteger

UInteger32 (historic) java.lang.Long

Figure 3: SNMP to Java Data Type Mapping used by jSNMP

A question may arise regarding the mapping of the ASN.1 types INTEGER and Integer32 to
java.math.BigInteger rather than to java.lang.Integer. This was done to maintain
correctness for the ASN.1 INTEGER and Integer32 types, as they are not defined as having a fixed
length where as the java.lang.Integer has a fixed length of 4 bytes.
java.math.BigInteger was selected because it does not have this limitation.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 13

Also, the Counter and Counter32, Gauge and Gauge32, Unsigned32 and UInteger32,
and TimeTicks ASN.1 types are defined as unsigned 32-bit numbers but in Java all numbers are
signed. To preserve correctness and to prevent the user from having to perform conversions, a
java.lang.Long is used. The only potential issue with this mapping is if the user supplies jSNMP
with a value that is bigger than an unsigned 32-bit value can represent. In this case, jSNMP will throw
an exception.

An IP Address will be returned as a string in dotted quad notation (e.g. “10.0.0.1”).

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 14

Core Examples

Overview
jSNMP Enterprise is shipped with several applications and applets that demonstrate basic jSNMP
functionality. The applications are simple command line tools. The applets demonstrate the behavior
of jSNMP within a web browser.

Java Applications
The command line example applications for the local Java interfaces are
SnmpV1GetSysInfo.java, SnmpV1TrapSenderTest.java,
SnmpTrapListenerTest.java, SnmpV1WalkerTest.java,
SnmpV2WalkerTest.java, and SnmpV3WalkerTest.java, which are found in the examples
directory of the distribution.

The SnmpV1GetSysInfo application illustrates how to query a remote SNMPv1 agent for basic
system information objects using the jSNMP’s
com.outbackinc.services.protocol.snmp.mib package. The
SnmpV1TrapSenderTest application illustrates how to send SNMPv1 traps. The
SnmpTrapListenerTest application illustrates how to receive and filter incoming traps and
informs. The SnmpV1WalkerTest, SnmpV2WalkerTest, and SnmpV3WalkerTest
applications illustrate how to walk a MIB on remote SNMPv1, SNMPv2, and SNMPv3 agents.

Building
Building these examples is straightforward. First, the CLASSPATH must be set correctly as described
in the Installation section above. Next compile the Java source for these applications with javac as
shown:

>javac SnmpV1GetSysInfo.java
>javac SnmpV1TrapSenderTest.java
>javac SnmpV1V2V3TrapListenerTest.java
>javac SnmpV1WalkerTest.java
>javac SnmpV2WalkerTest.java
>javac SnmpV3WalkerTest.java

This will put the Java class files in the local directory. Make sure the local directory is on the
CLASSPATH or move the class files to a directory that is on a CLASSPATH.

Applications
Each application requires different command line parameters, which can be ascertained by running an
application without any parameters.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 15

SnmpV1GetSysInfo
A query and output of the SnmpV1GetSysInfo application to determine its arguments will look
like the following:

>java SnmpV1GetSysInfo
Usage : java SnmpV1GetSysInfo <hostname readcommunity>
 hostname : host name or IP address of agent to query
 readcommunity : read community of agent to query

A correct query and partial output of the SnmpV1GetSysInfo application will look something like
the following:

>java SnmpV1GetSysInfo foobar public
sysName.0 found in MIB RFC1213-MIB
sysName.0 (1.3.6.1.2.1.1.5.0) value = foobar
sysName.0 (1.3.6.1.2.1.1.5.0) type = OctetString
sysName.0 (1.3.6.1.2.1.1.5.0) abstract type = DisplayString
sysName.0 (1.3.6.1.2.1.1.5.0) access = read-write
sysName.0 (1.3.6.1.2.1.1.5.0) status = mandatory
sysName.0 (1.3.6.1.2.1.1.5.0) description = An administratively-assigned

name for this managed node. By convention, this is the node's fully-
qualified domain name.

SnmpV1TrapSenderTest
A query and output of the SnmpV1TrapSenderTest application to determine it arguments will
look like the following:

>java SnmpV1TrapSenderTest
Usage : java SnmpV1TrapSenderTest targethostname fromhostname timeticks

communityname enterpriseOID trapnumber
 targethostname : host to send trap to
 fromhostname : host trap from
 timeticks : time ticks of host trap from
 communityname : community name for trap
 enterpriseOID : trap enterprise OID
 trapnumber : starting trap number for enterprise OID ... trap will
 be sent this many times with incrementing trap number

A correct query and output of the SnmpV1TrapSenderTest application will look something like
the following:

>java SnmpV1TrapSenderTest foo.jsnmp.com fi.jsnmp.com 500 public
 1.3.6.1.6.3.1.1.5 2
placeTrapOrder(1.3.6.1.6.3.1.1.5.1) succeeded
placeTrapOrder(1.3.6.1.6.3.1.1.5.2) succeeded

SnmpV1V2V3TrapListenerTest
The SnmpV1V2V3TrapListenerTest application will run correctly, but with no output unless
the remote SNMP device sends its notifications to the local host. This is typically configurable at the
remote device. See your device's documentation for details. Once the local host is set as a notification
recipient, start the SnmpV1V2V3TrapListenerTest application as follows:

>java SnmpV1V2V3TrapListenerTest

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 16

The correct output of this application will look something like the following when the remote agent is
stopped:

Listening for traps and informs ...
Received a SNMPv2 trap ...
 Port : 162
 Generating Agent : 207.114.146.70
 Sending Agent : 207.114.146.70
 Time Stamp : 82035
 Enterprise OID : 1.3.6.1.4.1.2021.251
 Trap Type : 2
Received a SNMPv2 inform ...
 Port : 162
 Generating Agent : 207.114.146.70
 Sending Agent : 207.114.146.70
 Time Stamp : 82036
 Enterprise OID : 1.3.6.1.4.1.2021.251
 Trap Type : 2
Received a SNMPv1 trap ...
 Port : 162
 Generating Agent : 207.114.146.70
 Sending Agent : 207.114.146.70
 Time Stamp : 82036
 Enterprise OID : 1.3.6.1.4.1.2021.251
 Trap Type : 2

The correct output of this application will look something like the following when the remote agent is
started:

Received a SNMPv2 trap ...
 Port : 162
 Generating Agent : 207.114.146.70
 Sending Agent : 207.114.146.70
 Time Stamp : 33
 Enterprise OID : 1.3.6.1.6.3.1.1.5
 Trap Type : 0
 VarBinds:
 1.3.6.1.6.3.1.1.4.3.0 (1.3.6.1.4.1.2021.250.10)
Received a SNMPv2 inform ...
 Port : 162
 Generating Agent : 207.114.146.70
 Sending Agent : 207.114.146.70
 Time Stamp : 33
 Enterprise OID : 1.3.6.1.6.3.1.1.5
 Trap Type : 0
 VarBinds:
 1.3.6.1.6.3.1.1.4.3.0 (1.3.6.1.4.1.2021.250.10)
Received a SNMPv1 trap ...
 Port : 162
 Generating Agent : 207.114.146.70
 Sending Agent : 207.114.146.70
 Time Stamp : 33

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 17

 Enterprise OID : 1.3.6.1.6.3.1.1.5
 Trap Type : 0

SnmpV1WalkerTest and SnmpV2WalkerTest
The SnmpV1WalkerTest and SnmpV2WalkerTest applications have identical arguments, as
shown by the following example:

>java SnmpV1WalkerTest
Usage : java SnmpV1WalkerTest <hostname readcommunity>
 hostname : szHost on which agent resides to walk
 readcommunity : read community of agent to walk

The difference between the two applications is that SnmpV1WalkerTest assumes the remote agent
speaks SNMPv1 and that SnmpV2WalkerTest assumes the remote agent speaks SNMPv2c. The
following illustrates a sample query of an SNMPv1 agent with the SnmpV1WalkerTest
application:

>java SnmpV1WalkerTest foobar.jsnmp.com public
Walking MIB Tree of foobar using SNMPv1
1: 1.3.6.1.2.1.1.1.0 (Linux foobar.jsnmp.com 2.2.12-20 #1 Mon Sep 27
10:25:54 EDT 1999 i586)
2: 1.3.6.1.2.1.1.2.0 (1.3.6.1.4.1.2021.250.10)
3: 1.3.6.1.2.1.1.3.0 (40934162)
4: 1.3.6.1.2.1.1.4.0 (jim)
5: 1.3.6.1.2.1.1.5.0 (foobar.jsnmp.com)
6: 1.3.6.1.2.1.1.6.0 (Right here, right now.)
7: 1.3.6.1.2.1.1.8.0 (0)
8: 1.3.6.1.2.1.1.9.1.2.1 (1.3.6.1.2.1.31)
9: 1.3.6.1.2.1.1.9.1.2.2 (1.3.6.1.6.3.1)
…
880: 1.3.6.1.6.3.16.1.5.1.0 (0)
881: 1.3.6.1.6.3.16.1.5.2.1.3.3.97.108.108.1 (Ç)
882: 1.3.6.1.6.3.16.1.5.2.1.4.3.97.108.108.1 (1)
883: 1.3.6.1.6.3.16.1.5.2.1.5.3.97.108.108.1 (4)
884: 1.3.6.1.6.3.16.1.5.2.1.6.3.97.108.108.1 (1)
885: order failed (No Such Name)
Ending MIB Walk

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 18

SnmpV3WalkerTest
The SnmpV3WalkerTest arguments are illustrated by the following example:

>java SnmpV3WalkerTest
Usage : java SnmpV3WalkerTest hostname username
 [-auth AuthNoPriv|AuthPriv –authscheme MD5|SHA
 -authpwd userspassword -privpwd userspassword]
hostname : Host on which agent resides to walk
username : user with permission to query agent
-auth AuthNoPriv : use authentication without privacy to query agent
-auth AuthPriv : use authentication with privacy to query agent
 (requires -privpwd)
-authscheme MD5 : use MD5 authentication scheme to query agent
-authscheme SHA : use SHA authentication scheme to query agent
-authpwd userspassword : use "userspassword" as authentication
 password to query agent
-privpwd userspassword : use "userspassword" as privacy
 password to query agent (required for -auth AuthPriv)

The SnmpV3WalkerTest application assumes the remote agent speaks SNMPv3. The following
illustrates a sample query using authentication and encryption of an SNMPv3 agent with the
SnmpV3WalkerTest application, where joeuser has permissions to make queries on the remote
agent using the MD5 authentication scheme, joeusersauthpwd as an authentication password, and
joeusersprivpwd as a privacy password:

>java SnmpV3WalkerTest foobar joeuser –auth AuthPriv -authscheme MD5
 -authpwd joeusersauthpwd -privpwd joeusersprivpwd
Walking MIB Tree of foobar using SNMPv3
1: 1.3.6.1.2.1.1.1.0 (Linux foobar.jsnmp.com 2.2.12-20 #1 Mon Sep 27
10:25:54 EDT 1999 i586)
2: 1.3.6.1.2.1.1.2.0 (1.3.6.1.4.1.2021.250.10)
3: 1.3.6.1.2.1.1.3.0 (41217383)
4: 1.3.6.1.2.1.1.4.0 (jim)
5: 1.3.6.1.2.1.1.5.0 (foobar.jsnmp.com)
6: 1.3.6.1.2.1.1.6.0 (Right here, right now.)
7: 1.3.6.1.2.1.1.8.0 (0)
8: 1.3.6.1.2.1.1.9.1.2.1 (1.3.6.1.2.1.31)
9: 1.3.6.1.2.1.1.9.1.2.2 (1.3.6.1.6.3.1)
…
880: 1.3.6.1.6.3.16.1.5.1.0 (0)
881: 1.3.6.1.6.3.16.1.5.2.1.3.3.97.108.108.1 (Ç)
882: 1.3.6.1.6.3.16.1.5.2.1.4.3.97.108.108.1 (1)
883: 1.3.6.1.6.3.16.1.5.2.1.5.3.97.108.108.1 (4)
884: 1.3.6.1.6.3.16.1.5.2.1.6.3.97.108.108.1 (1)
885: order failed (End Of MIB View)
Ending MIB Walk

Java Applets
In order to demonstrate the use of jSNMP from within a Java applet, jSNMP Enterprise includes the
following sample applets:

SnmpV1GetSetGetNextApplet.java
SnmpV1TrapListenerApplet.java
SnmpV1TrapSenderApplet.java

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 19

SnmpV1WalkerApplet.java
SnmpV2GetBulkApplet.java
SnmpV2GetSetGetNextApplet.java
SnmpV2TrapInformSenderApplet.java
SnmpV2TrapListenerApplet.java
SnmpV2WalkerApplet.java
SnmpV3WalkerApplet.java
SnmpV3GetSetGetNextApplet.java

These applets provide examples of one approach to running jSNMP within a browser. They are very
similar in nature to the Java Local Applications above. Each has a corresponding HTML page (i.e.
SnmpV1TrapListenerApplet.html) in the examples directory of the distribution. Each HTML
page describes how to build and run its corresponding applet.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 20

RMI Integration

Introduction
The RMI enhancement to jSNMP adds a wrapper around the jSNMP core that allows remote client
applications to access a jSNMP-based server application using the Java RMI distributed object
mechanism. It does this by creating remote versions of the key jSNMP interfaces, along with
wrappers that marshal methods and parameters back and forth between the remote (RMI) versions and
the local versions. The goal is to make programming RMI-based jSNMP applications as similar as
possible to local applications.

RMISnmpServer
The RMISnmpServer class creates the core RMI remote object implementations (the
SnmpService, SnmpAuthoritativeSessionFactory, and
SnmpTrapProfileFactory), and publishes them in the RMI Registry. This makes them
accessible to remote clients. Note that RMISnmpServer does NOT include a main()method. An
example server application (RMIServer.java) is included in the examples directory of the
distribution. Any changes to the core SnmpConfiguration should be done in the RMIServer
application before creating the RMISnmpServer object.

RMISnmpClient
The RMISnmpClient class is the main interface used by RMI client applications to access remote
services. It provides a similar role to RMI client applications that SnmpLocalInterfaces does
for normal jSNMP programs. The class constructor takes a single parameter, which is the hostname of
the jSNMP RMI server host. Internally, it connects and holds remote references to the various RMI-
exposed services.

Test Applets
RMI versions of the various test applets are included in the examples directory of the distribution.
They follow the same naming convention used by the original examples, with Snmp replaced with
Rmi.

RMI Server

Requirements
The RMI Server implementation is provided in the file jSNMPEnterprise.jar located in the lib
subdirectory under the jSNMP Enterprise home directory. In order to incorporate the jSNMP RMI
Server services into a Java application, the developer must set the CLASSPATH environment variable
to this include this JAR file. For example, this could be accomplished with the following command:

CLASSPATH=C:\jSNMP\lib\jSNMPEnterprise.jar;%CLASSPATH%

for Win32 systems or

CLASSPATH=/jSNMP/lib/jSNMPEnterprise.jar:$CLASSPATH; export CLASSPATH

for Unix systems.

NOTE: including more than one of the jSNMP JARs in the CLASSPATH will result in
unpredictable behavior

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 21

Additionally, the RMI Server must be run under an RMI registry server and with a security policy.
For example, to run the example RMIServer, you might do the following:

• Create a java security policy file policy with the following lines:
grant {

// Allow everything for now
permission java.security.AllPermission;

};

• Launch the RMI registry server as follows:
Windows - start rmiregistry
UNIX - rmiregistry&

• Launch the jSNMP RMI server as follows:
>java -Djava.security.policy=policy RMIServer

Please refer to the documentation for Windows or Unix for specific details on the use of
rmiregistry.

A web server provides the best way to source classes under RMI. The following instructions illustrate
running a jSNMP RMI Server under Red Hat Linux 6.2 using the Apache web server and the Java 2
SDK 1.3:

1. Create the jSNMPEnterprises/jSNMP/examples/classes directory under the
document root (e.g. /home/httpd/html).

2. Place all jSNMP classes and jars into the
jSNMPEnterprises/jSNMP/examples/classes directory.

3. Place all of your HTML files (i.e., RmiV1WalkerApplet.html) referencing the jSNMP
classes in the jSNMPEnterprises/jSNMP/examples directory.

4. In a console window, set the CLASSPATH to the
jSNMPEnterprises/jSNMP/examples/classes directory and start the RMI
registry and jSNMP RMI server, specifying the RMI codebase:
>cd /home/httpd/html/jSNMPEnterprises/jSNMP/examples/classes
>export JAVA_HOME=/usr/java/jdk1.3.0_02/jre
>export PATH=$JAVA_HOME/bin:$PATH
>export CLASSPATH=.:./jSNMPEnterprise.jar: \
$JAVA_HOME/lib/ext/jce1_2_1.jar: \
$JAVA_HOME/lib/ext/sunjce_provider.jar: \
$JAVA_HOME/lib/ext/local_policy.jar: \
$JAVA_HOME/lib/ext/US_export_policy.jar
>rmiregistry&
>java -Djava.security.policy=policy \
-Djava.rmi.server.codebase= \
http://myserver/jSNMPEnterprises/jSNMP/examples/classes \
-Djava.security.policy=policy RMIServer

5. Ensure that the web server can resolve the hostnames of any clients that attach to it, either
through DNS or a local host file.

6. Use a browser or the JDK appletviewer to view the applet:
>appletviewer \
http://myserver/jSNMPEnterprises/jSNMP/examples/RmiV1WalkerApplet.html

Note that Sun also provides a simple web server that can be used in place of the Apache web server.
Also, more discussion on the RMI registry, servers, and applets can be found at
http://java.sun.com/j2se/1.3/docs/guide/rmi/getstart.doc.html#7445.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 22

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/rmiregistry.html
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/rmiregistry.html
http://java.sun.com/products/jdk/rmi/class-server.zip
http://java.sun.com/j2se/1.3/docs/guide/rmi/getstart.doc.html

Use
Using the jSNMP Enterprise RMI server is very simple; the class RMISnmpServer is provided to
handle the service initialization. Simply constructing the class will start the server. The server may
then be queried via the methods getService(), getAuthoritativeSessionFactory(),
and getTrapProfileFactory() to retrieve the references which a client may use to establish
communication to the server. The following code shows how an application would start the server:

//Start the Server
RMISnmpServer cRMIServer = new RMISnmpServer();

//You now have a RMI service waiting
//to handle SNMP requests

RMI Client

Requirements
The Java implementation of the RMI Client is provided in both the jSNMPRmiClient.jar and in
the jSNMPEnterprise.jar which are located in the lib subdirectory under the jSNMP Enterprise
home directory. The former is smaller and is appropriate for distribution to thin clients. In order to
incorporate the Java RMI Client into an application, the developer must set the CLASSPATH
environment variable to include one of these JAR files. For example, this could be accomplished with
the following command:

CLASSPATH=C:\jSNMP\lib\jSNMPRmiClient.jar;%CLASSPATH%

for Win32 systems or

CLASSPATH=/jSNMP/lib/jSNMPRmiClient.jar:$CLASSPATH; export CLASSPATH

for Unix systems.

NOTE: including more than one of the jSNMP JARs in the CLASSPATH will result in
unpredictable behavior

Use
Using jSNMP Enterprise with RMI in a client application is no different than using jSNMP in a stand-
alone application. Once the interfaces have been retrieved, the application developer can continue
programming to jSNMP Enterprise just like it was a local application.

To retrieve the interfaces to the SnmpService, SnmpAuthoritativeSessionFactory,
and SnmpTrapProfileFactory, you need only to construct the RMISnmpClient passing in as
a parameter the address of the remote jSNMP RMI server. Then, the methods getService(),
getAuthoritativeSessionFactory(), and getTrapProfileFactory() on
RMISnmpClient will return the interfaces. The following code shows how this can be
accomplished:

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 23

try {
//Create the RMI client

 RMISnmpClient cRMIClient = new RMISnmpClient(“foo.foobar.com”);

//Get the Interfaces
SnmpService cService = cRMIClient.getService();
SnmpAuthoritativeSessionFactory cAuthoritativeSessionFactory =

 cRMIClient.getAuthoritativeSessionFactory();
SnmpTrapProfileFactory cTrapProfileFactory =

 cRMIClient.getTrapProfileFactory();
}
catch (RemoteException re) {

System.out.println("Couldn't create RMI client");
}

As an example, the following code demonstrates how to place an order for the MIB-2 variable
sysName to a SNMPv1 agent:

RMISnmpClient cRMIClient;
SnmpService cService;
SnmpOrderInfo cOrderInfo;
CSMSecurityInfo cSecurityInfo;
SnmpAuthoritativeSessionFactory cAuthoritativeSessionFactory;
SnmpAuthoritativeSession cRemoteAuthoritativeSession;

try {

//Create the RMI client
cRMIClient = new RMISnmpClient(“foo.foobar.com”);

//Set the OID we want to retrieve
String[] szOIDs = new String[1];
szOIDs[0] = "sysName.0";

//Initialize the Snmp Service
cService = cRMIClient.getService();

//Specify order details..
//timeout, retries, cache threshold
cOrderInfo = new SnmpOrderInfo(2, 3, 0);

//read community, write community
cSecurityInfo = new CSMSecurityInfo("public", "");

cAuthoritativeSessionFactory =

 cRMIClient.getAuthoritativeSessionFactory();

cRemoteAuthoritativeSession =
 cAuthoritativeSessionFactory.createRemoteAuthoritativeSession(
 szHost,
 161,
 SnmpConstants.SNMP_VERSION_1,
 cSecurityInfo);

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 24

//Place the order!
int iOrderNumStart = 1;
cService.placeGetOrder(cRemoteAuthoritativeSession,

 cOrderInfo,
 true,
 szOIDs,
 this,
 iOrderNumStart);
}
catch (SnmpSecurityException sse) {

System.out.println("Unable to create authoritative session");
}
catch (RemoteException re) {

System.out.println("Couldn't create RMI client");
}
catch (UnknownHostException uhe) {

System.out.println("Unknown host " + szHost);
}

Note that the order specifies this as the SnmpCustomer callback interface. Here is an example of the
deliverSuccessfulOrder() implemented in the object that made the call:

public void deliverSuccessfulOrder(int SnmpVarBind cSnmpVarBind)
{

System.out.println("SysName.0 = " + cSnmpVarBind.getStringValue());
cSnmpService.stop();
System.exit(0);

}

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 25

RMI Examples

Overview
jSNMP Enterprise is shipped with several RMI applications and applets that demonstrate basic jSNMP
RMI functionality. The applications are simple command line tools. The applets demonstrate the
behavior of jSNMP under RMI within a web browser.

Java Applications
The command line example applications for the local Java interfaces are
RmiV1WalkerTest.java, RmiV2WalkerTest.java, and RmiV3WalkerTest.java,
which are found in the examples directory of the distribution. These applications illustrate how to
walk a MIB on remote SNMPv1, SNMPv2, and SNMPv3 agents.

Building
Building these examples is straightforward. First, the CLASSPATH must be set correctly as described
in the Installation section above. Next compile the Java source for these applications with javac as
shown:

>javac RmiV1WalkerTest.java
>javac RmiV2WalkerTest.java
>javac RmiV3WalkerTest.java

This will put the Java class files in the local directory. Make sure the local directory is on the
CLASSPATH or move the class files to a directory that is.

Applications
Each application requires different command line parameters, similar to the corresponding core
applications described in the section jSNMP Examples above. The only addition is the name of the
RMI server. For example,

>java SnmpV1WalkerTest agenthost public

becomes

>java RmiV1WalkerTest rmihost agenthost public

Java Server
In order to demonstrate the RMI Server component of jSNMP Enterprise, a sample RMI Server
application (RMIServer.java) is included.

Building
Building this example is straightforward. First, the CLASSPATH must be set correctly as described in
the Installation section above. Next compile the Java source with javac as shown:

javac RMIServer.java

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 26

Running
The RMI Server must be run under an RMI registry server and with a security policy. For example, to
run the example RMIServer, you would do the following:

• Create a java security policy file policy with the following lines:
grant {

// Allow everything for now
 permission java.security.AllPermission;
};

• Launch the RMI registry server as follows:
Windows - start rmiregistry
UNIX - rmiregistry&

• Launch the jSNMP RMI server as follows:
>java -Djava.security.policy=policy RMIServer

Java Applets
In order to demonstrate the use of jSNMP under RMI from within a Java applet, jSNMP Enterprise
includes the sample applets RmiV1GetSetGetNextApplet.java,
RmiV1TrapListenerApplet.java, RmiV1TrapSenderApplet.java,
RmiV1WalkerApplet.java, RmiV2GetBulkApplet.java,
RmiV2GetSetGetNextApplet.java, RmiV2TrapInformSenderApplet.java,
RmiV2TrapListenerApplet.java, and RmiV2WalkerApplet.java. These applets
provide examples of one approach to running jSNMP under RMI within a browser. They are very
similar in nature to the Java Local Applications above. Each has a corresponding HTML page (i.e.
RmiV1TrapListenerApplet.html) in the examples directory of the distribution. Each HTML
page describes how to build and run its corresponding applet.

NOTE: in order to use Microsoft’s Internet Explorer and RMI, you need to download
the RMI classes for Internet Explorer; download the RMI classes from Microsoft and
unzip the rmi.zip file into your Windows java directory; any unzip utility capable of
handling long filenames can be used, such as WinZip; alternately, you can get a nice
bundled package from IBM that installs the RMI classes in the right location

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 27

ftp://ftp.microsoft.com/developr/MSDN/UnSup-ed/rmi.zip
http://www.winzip.com/
http://www.alphaworks.ibm.com/formula/RMI

CORBA Integration

Introduction
jSNMP Enterprise 3.x is shipped with CORBA support to maintain backward compatibility with
jSNMP Enterprise 2.x.

NOTE: the 3.x implementation of the jSNMP CORBA service only includes those
interfaces previously available in jSNMP Enterprise 2.x and does not support SNMPv2c
or SNMPv3. To use jSNMP with SNMPv2c or SNMPv3 support under CORBA, we
suggest using RMI over IIOP

Prerequisites
In order to use the supplied CORBA interfaces, a Java ORB compatible with the OMG IDL to Java
mapping is required as well as a CORBA development environment, which includes an IDL compiler.

jSNMP Enterprise is distributed with the IDL for the CORBA interfaces. The IDL is in the file
jSNMPEnterprises/jSNMP/idl/OcsSNMPv1.idl. Either use the included
JDKStubs.jar for Sun’s ORB or the IDL must be compiled with the IDL compiler for your ORB
to generate the CORBA stubs required for communication.

NOTE: although the IDL to Java mapping specifies portable stubs, Java ORBs do not
necessarily generate stubs that are interoperable

The IDL compiler will generate the Java source for the stubs. These stubs then need to be compiled
using javac. The class files that result will need to be added to your CLASSPATH for a Java
application. The following definitions will be referenced later:

STUBPATH: path to the class files of the generated stubs from IDL
ORBPATH: path to the class files required for your ORB (see ORB documentation)

CORBA Server

Requirements
The CORBA Server implementation is provided in the file jSNMPEnterprise.jar located in the
lib subdirectory under the jSNMP Enterprise home directory. In order to incorporate the jSNMP
CORBA Server services into a Java application, the developer must set the CLASSPATH environment
variable to include this JAR file. Additionally, the classpath must include the path to the classes
compiled from the IDL generated stubs as well as classes required by your ORB. If the distribution
was unzipped in the root of the C: drive, this could be accomplished with the following command:

CLASSPATH=C:\jSNMP\lib\jSNMPEnterprise.jar;%STUBPATH%;%ORBPATH%;
%CLASSPATH%

for Win32 systems or

CLASSPATH=/jSNMP/lib/jSNMPEnterprise.jar:$STUBPATH:$ORBPATH:
$CLASSPATH; export CLASSPATH

for Unix systems.

NOTE: including more than one of the jSNMP JARs in the CLASSPATH will result in
unpredictable behavior

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 28

http://java.sun.com/products/rmi-iiop/

Use
Using the jSNMP Enterprise CORBA server is very simple; the class CORBASnmpServer is
provided to handle the service initialization. Simply constructing the class will start the server. The
server may then be queried via the methods getServiceIOR()and
getSnmpTrapProfileFactoryIOR() to retrieve the references which a client may use to
establish communication to the server. The following code shows how an application would start the
server and export the object references to files:

try {
//Open files to hold IORs
RandomAccessFile serviceIORFile = new RandomAccessFile(args[1], "rw");

 RandomAccessFile factoryIORFile = new RandomAccessFile(args[0], "rw");

//Start the Server
CORBASnmpServer server = new CORBASnmpServer();

//Write IORs to files
serviceIORFile.writeBytes(server.getServiceIOR());

 serviceIORFile.close();
 factoryIORFile.writeBytes(server.getSnmpTrapProfileFactoryIOR());

factoryIORFile.close();
}
catch (IOException ioe) {
}

CORBA Client (non-Java)
The CORBA Server provides the services described in the IDL file. These services may be retrieved
by any CORBA Client implementation built from this IDL. The IORs generated by a jSNMP
Enterprise server application can be published in a naming service or used manually to establish the
Client/Server communication. See your appropriate ORB manuals for details.

CORBA Java Client

Requirements
The Java implementation of the CORBA Client is provided in both the jSNMPCorbaClient.jar
and in the jSNMPEnterprise.jar which are located in the lib subdirectory under the jSNMP
Enterprise home directory. The former is smaller and is appropriate for distribution to thin clients. In
order to incorporate the Java CORBA Client into an application, the developer must set the
CLASSPATH environment variable to include one of these JAR files. Additionally, the
CLASSPATH must include the path to the classes compiled from the IDL generated stubs as well as
classes required by your ORB. For example, this could be accomplished with the following command:

CLASSPATH=C:\ jSNMP\lib\jSNMPCorbaClient.jar;%STUBPATH%;
%ORBPATH%;%CLASSPATH%

for Win32 systems or

CLASSPATH=/ jSNMP/lib/jSNMPCorbaClient.jar:$STUBPATH:$ORBPATH:
$CLASSPATH; export CLASSPATH

for Unix systems.

NOTE: including more than one of the jSNMP JARs in the CLASSPATH will result in
unpredictable behavior

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 29

Use
Using jSNMP Enterprise with CORBA in a client application is no different than using jSNMP in a
standalone application. Once the interfaces have been retrieved, the application developer can
continue programming to jSNMP Enterprise just like it was a local application.

To retrieve the interfaces to the SnmpService and SnmpTrapProfileFactory, you need only
to construct the CORBASnmpClient, passing in as parameters the IORs for the remote objects.
Then, the methods getService() and getSnmpTrapProfileFactory() on
CORBASnmpClient will return the interfaces. The following code shows how this can be
accomplished given IORs from a file:

try
{

//Read IORs
RandomAccessFile factoryFile = new RandomAccessFile(args[0], "r");

 String szFactoryIOR = factoryFile.readLine();
 factoryFile.close();

RandomAccessFile serviceFile = new RandomAccessFile(args[1], "r");
String szServiceIOR = serviceFile.readLine();
serviceFile.close();

//Create the CORBA client
CORBASnmpClient client = new

 CORBASnmpClient(szFactoryIOR,szServiceIOR);

//Get the Interfaces
SnmpService service = client.getService();
SnmpTrapProfileFactory factory = client.getSnmpTrapProfileFactory();

//Now those interfaces can be used just like local interfaces.
//You place orders and work with traps the SAME way as you would
//if they were local.

}
catch (IOException ioe){
}

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 30

CORBA Examples

Overview
jSNMP Enterprise is shipped with several CORBA applications that demonstrate basic jSNMP
CORBA functionality. The applications are simple command line tools. The applet demonstrates the
behavior of jSNMP under CORBA within a web browser.

Java Applications
The command line example applications for the local Java interfaces are CORBAModTest.java,
CORBATrapTest.java, and CORBAWalkerTest.java, which are found in the examples
directory of the distribution.

The CORBAModTest application illustrates how to perform a SET on a remote SNMPv1 agent. The
CORBATrapTest application illustrates how to receive and filter incoming traps and informs. The
CORBAWalkerTest application illustrates how to walk a MIB on remote SNMPv1 agents.

Building
Building these examples is straightforward. First, the CLASSPATH must be set correctly as described
in the Installation section above. Next compile the Java source for these applications with javac as
shown:

>javac CORBAModTest.java
>javac CORBATrapTest.java
>javac CORBAWalkerTest.java

This will put the Java class files in the local directory. Make sure the local directory is on the
CLASSPATH or move the class files to a directory that is on a CLASSPATH.

Applications
Each application requires different command line parameters, which can be ascertained by running an
application without any parameters.

CORBAModTest
A query and output of the CORBAModTest application to determine its arguments will look like the
following:

>java CORBAModTest
Usage : java CORBAModTest <factoryIORfile> <serviceIORfile>
 <hostname> <writecommunity>
factoryIORfile : file from which to read the IOR of the
 SnmpTrapProfileFactory
serviceIORfile : file from which to read the IOR of the
 SnmpService
hostname : host on which agent resides
writecommunity : write community on host on which agent
 resides

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 31

A correct query and output of the CORBAModTest application will look something like the
following:

>java CORBAModTest factoryfile servicefile foobar public
Setting sysLocation.0 on foobar with public
1.3.6.1.2.1.1.4.0 = jSNMPTester1234567890

CORBATrapTest
The CORBATrapTest application will run correctly, but with no output unless the remote SNMP
device sends its notifications to the local host. This is typically configurable at the remote device. See
your device's documentation for details. Once the local host is set as a notification recipient, start the
CORBATrapTest application as follows:

>java CORBATrapTest factoryfile servicefile

The correct output of this application will look something like the following:

Listening for traps ...
Received a SNMPv1 trap ...
Port : 162
Enterprise OID : 1.3.6.1.4.1.2021.251
Generating Agent : 207.114.146.70
Generic Trap Type : 6
Specific Trap Type : 1
Time Stamp : 82035
VarBind information :
 Name : 1.3.6.1.4.1.9.2.9.3.1.1.2.1
 Type : Integer
 Value : 5
 Name : 1.3.6.1.2.1.6.13.1.1.192.168.1.2
 Type : Integer
 Value : 5

CORBAWalkerTest
A correct query and output of the CORBAWalkerTest application will look something like the
following:

>java CORBAWalkerTest factoryfile servicefile foobar public
Walking MIB Tree of foobar with public
1.3.6.1.2.1.1.1.0
1.3.6.1.2.1.1.2.0
1.3.6.1.2.1.1.3.0
1.3.6.1.2.1.1.4.0
1.3.6.1.2.1.1.5.0
…
1.3.6.1.6.3.16.1.5.1.0
1.3.6.1.6.3.16.1.5.2.1.3.3.97.108.108.1
1.3.6.1.6.3.16.1.5.2.1.4.3.97.108.108.1
1.3.6.1.6.3.16.1.5.2.1.5.3.97.108.108.1
1.3.6.1.6.3.16.1.5.2.1.6.3.97.108.108.1
WalkerTest.deliveredFailedOrder(885, 2)
Ending MIB Walk

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 32

Java Server
In order to demonstrate the CORBA Server component of jSNMP Enterprise, a sample CORBA
Server application (CORBAServer.java) is included.

Building
To build this application, the developer must perform the following steps:

• Compile the IDL to generate the Java stubs and skeletons for the jSNMP service.
This step is outlined in the CORBA Integration, Prerequisites section above.

• Compile the Java skeletons created in step one. From within the directory containing
the generated stubs and skeletons, execute:
>javac *.java

• Compile the CORBAServer application. The CLASSPATH must be set to include
the jSNMPEnterprise.jar file, the class files generated from the second step,
and the CLASSPATH required by your ORB (see ORB documentation).

Running
The CORBAServer application requires two parameters. Each of these is a filename to which the
application will write IORs for the relevant jSNMP services. Any two filenames which may be
overwritten and which will be accessible to the client will do. For example:

>java CORBAServer file1 file2

The correct output will look something like the following:

Successfully opened files to hold IORs...
Successfully started SNMP service...
Successfully wrote IORs to files...
Awaiting requests...

Java Applet
In order to demonstrate the use of the remote CORBA interfaces from within a Java applet, jSNMP
Enterprise includes the sample applet CORBATestApplet.java. This applet provides an example
of one approach to running jSNMP within a browser. It is very similar in nature to
CORBAWalkerTest, the only substantive difference being the method by which the IOR files are
retrieved, and the creation of an HTML file that references the applet.

Below is example HTML with an applet tag that references a JAR, which is the standard package
format supported by most browsers (see readme.txt for other options). Note that the Java classes
for both the ORB (in this case OrbixWeb) and the CORBA stubs generated by the IDL compiler must
be in the "/classes" directory of your web server which explains the use of codebase. codebase is
required when using Netscape Communicator, since Communicator doesn’t support multiple JARs in
the archive tag.

<html>
<body>

<applet codebase="/classes" archive="jSNMPCorbaClient.jar"
 code="CORBAWalkerApplet" height=400 width=500>
 <param name="org.omg.CORBA.ORBClass" value="IE.Iona.OrbixWeb.CORBA.BOA">

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 33

 <param name="factoryIOR" value="factory.ior">
 <param name="serviceIOR" value="service.ior">
 <param name="managedHost" value="myRouter">
</applet>

</body>
</html>

The parameters required are:

• org.omg.CORBA.ORBClass: used to specify the base CORBA ORB class, overriding any
ORB bundled with the browser

• factoryIOR: the factory IOR file generated by the CORBAServer; this must reside in the
same directory as the HTML page

• serviceIOR: the service IOR file generated by the CORBAServer; this also must reside in
the same directory as the HTML page

• managedHost: the host name of the managed device (the device hosting the SNMP agent)

Also note the use of jSNMPCorbaClient.jar. This JAR file is included with the jSNMP
distribution for use in client applets. Only the jSNMP client-side classes are included, allowing any
jSNMP-based applets to load more quickly. The JAR may also be compressed to improve download
speed. See the readme.txt file for details.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 34

Error Messages

The jSNMP service emits errors to standard out under certain exceptional conditions. Unless
otherwise indicated, the effect of the error is contained in the error message. The service is not
otherwise affected and will continue to run normally. The possible error messages are listed below.

Invalid PDUs
Warning : SNMP service received incomplete PDU from x.x.x.x. Some
requests may timeout.
Warning : SNMP service received invalid PDU from x.x.x.x. Some requests
may timeout.

These messages will be displayed if jSNMP receives bad responses from remote agents. As the PDUs
are bad, no further action can be taken on them. Any order corresponding to the bad PDU will
timeout.

Warning : SNMP service received invalid trap/inform PDU from x.x.x.x.
Trap discarded.
Warning : ASN.1 Error in decoding received trap.
Warning : IO Error in decoding received trap.

These messages will be displayed if jSNMP receives bad traps from remote agents. As the trap PDUs
are bad, no further action can be taken on them. The bad traps will then be discarded.

Warning : SNMP service unable to send PDU to …

This message will be displayed if jSNMP is unable to generate a PDU to be sent to a remote agent
because of a security or message processing exception. The warning message will include an
explanation for the cause of the exception. The offending PDU will not be sent and the associated
SnmpCustomer will receive a deliverFailedOrder().

Socket Failure
Warning : SNMP service communication layer encountered socket failure.
Warning : SNMP trap receiver communication layer encountered socket
failure.
Warning : Traps being received on port x were interrupted due to an
exception, some traps may have been lost.

These messages are displayed if there has been an underlying socket problem. jSNMP tries to recover
from a crashed socket and will try to open a new one. However, any orders that were placed over the
previous socket will be cancelled.

Warning : SNMP service communication layer restarted successfully.
Warning : SNMP trap receiver communication layer restarted successfully.

These messages are displayed after the socket failure messages if a new socket is successfully opened.

Warning : SNMP service communication layer cannot re-establish
communication; SNMP service is inactive.
Warning : SNMP trap receiver communication layer cannot re-establish
communication; SNMP trap receiver is inactive.
Warning : Unable to receive traps on port x -- socket exception
encountered.

These messages are displayed after the socket failure messages if a new socket cannot be opened. Note
that a single socket failure will only affect either the general SNMP service (GETs, SETs, etc.) or the
trap receiver function (traps, informs, etc.).

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 35

Low Memory Conditions
Warning : SNMP service trap queue is in a out-of memory condition.
Running the garbage collector to reclaim memory.
Warning : SNMP service trap queue is in a out-of memory condition. All
outstanding traps are void and cancelled.

These messages will be displayed if the trap receiver queue is out of memory.

Warning : deliverSuccessfulOrder(): RemoteException: …
Warning : deliverFailedOrder(): RemoteException: …
Warning : RMISnmpServer error: …

These messages will be displayed if a jSNMP RMI server attempts to communicate with a RMI client
that has disappeared without unregistering itself from the service. The jSNMP RMI service will
disconnect from the non-existent client . Any of the above warning messages is an indication of an
undeliverable client order, which will be dropped.

Fatal Errors
Error : Unable to start SnmpService …

This message will be displayed if the SNMP service is unable to obtain a socket on startup. This may
be caused by not having root privileges on the local host.

Error : ThreadResource.run() : Caught Exception (…) and aborting current
execution

This message will be displayed if the SNMP service encounters an internal error which causes a thread
worker to abort a job. The effects are unknown. This error should never be seen.

CORBA/RMI Errors
Warning : deliverSuccessfulOrder(): CORBA.COMM_FAILURE …
Warning : deliverSuccessfulOrder(): CORBA.NO_IMPLEMENT …
Warning : deliverSuccessfulOrder(): RemoteException …
Warning : deliverSuccessfulOrder(): Exception …
Warning : deliverFailedOrder(): CORBA.COMM_FAILURE …
Warning : deliverFailedOrder(): CORBA.NO_IMPLEMENT …
Warning : deliverFailedOrder(): RemoteException …
Warning : deliverFailedOrder(): Exception …
Warning : CORBA.COMM_FAILURE …
Warning : CORBA.NO_IMPLEMENT …
Warning : trapReceived(): Exception: …
Warning : trapReceived(): RMISnmpTrapListenerProxy error: …

These messages will be displayed if a jSNMP CORBA or RMI server attempts to communicate with a
CORBA or RMI client that has disappeared without unregistering itself from the service. The jSNMP
CORBA/RMI service will disconnect from the non-existent client. Any of the above warning
messages is an indication of an undeliverable client order, which will be dropped.

Warning : removeTrapListener(): Tried to remove a null remoteListenerId

This message will be displayed if a jSNMP RMI server receives a request to remove a null
TrapListener.

Error : Error marshalling varBind; Type …

This message will be displayed if a jSNMP CORBA server is unable to marshall a return type.

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 36

Additional Resources

For more information we suggest:

jSNMP Enterprise
Home Page

http://www.jsnmp.com/products.html

jSNMP Enterprise
FAQ

http://www.jsnmp.com/docs/jSNMP/jSNMPEnterpriseFAQ.pdf

jSNMP Enterprises’
collection of MIBs and
jMIBC dictionary files

http://www.jsnmp.com/MIBs/

Comp.protocols.snm
p FAQ (official
archive)

ftp://rtfm.mit.edu/pub/usenet/comp.protocols.snmp/comp.protocols.snmp_SNMP_FAQ
_Part_1_of_2

ftp://rtfm.mit.edu/pub/usenet/comp.protocols.snmp/comp.protocols.snmp_SNMP_FAQ
_Part_2_of_2

SimpleWeb Internet
Network Management,
University of Twente
(the Netherlands)

http://wwwsnmp.cs.utwente.nl/

General SNMP
Discussions

Listname: snmp@lists.psi.com

Subscribe: mail snmp-request@psi.com with a body of:
“subscribe snmp [your address]”

Unsubscribe: mail snmp-request@psi.com with a body of:
“unsubscribe snmp”

Java Web Site http://java.sun.com/

Java Cryptography
Extension Web Site

http://java.sun.com/products/jce/index-14.html

RMI-Oriented Web
Sites

http://java.sun.com/j2se/1.4/docs/guide/rmi/spec/rmi-title.html

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html

CORBA-oriented Web
Site

http://www.omg.org

CORBA-oriented
Newsgroup

news://comp.object.corba/

Figure 4: Additional Resources

Copyright 2003 jSNMP Enterprises, All Rights Reserved. 37

http://www.jsnmp.com/products.html
http://www.jsnmp.com/docs/jSNMP/jSNMPEnterpriseFAQ.pdf
http://www.jsnmp.com/MIBs/
ftp://rtfm.mit.edu/pub/usenet/comp.protocols.snmp/comp.protocols.snmp_SNMP_FAQ_Part_1_of_2
ftp://rtfm.mit.edu/pub/usenet/comp.protocols.snmp/comp.protocols.snmp_SNMP_FAQ_Part_1_of_2
ftp://rtfm.mit.edu/pub/usenet/comp.protocols.snmp/comp.protocols.snmp_SNMP_FAQ_Part_2_of_2
ftp://rtfm.mit.edu/pub/usenet/comp.protocols.snmp/comp.protocols.snmp_SNMP_FAQ_Part_2_of_2
http://wwwsnmp.cs.utwente.nl/
mailto:snmp@lists.psi.com
http://java.sun.com/
http://java.sun.com/products/jce/index-14.html
http://java.sun.com/j2se/1.4/docs/guide/rmi/spec/rmi-title.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
http://www.omg.org/
news://comp.object.corba/

	Introduction
	Description of jSNMP Enterprise
	Target Audience

	Installation
	Requirements
	Installation
	Setting CLASSPATH

	Using jSNMP
	Overview
	Initialization
	Configuration
	Variable Bindings
	SnmpCustomer
	User-Initiated Requests
	User-Initiated Notifications
	Agent-Initiated Notifications
	MIBs

	SNMP to Java Mapping
	Versions of SNMP Supported
	SNMP Operations
	Basic data types

	Core Examples
	Overview
	Java Applications
	Building
	Applications
	SnmpV1GetSysInfo
	SnmpV1TrapSenderTest
	SnmpV1V2V3TrapListenerTest
	SnmpV1WalkerTest and SnmpV2WalkerTest
	SnmpV3WalkerTest

	Java Applets

	RMI Integration
	Introduction
	RMISnmpServer
	RMISnmpClient
	Test Applets

	RMI Server
	Requirements
	Use

	RMI Client
	Requirements
	Use

	RMI Examples
	Overview
	Java Applications
	Building
	Applications

	Java Server
	Building
	Running

	Java Applets

	CORBA Integration
	Introduction
	Prerequisites
	CORBA Server
	Requirements
	Use

	CORBA Client (non-Java)
	CORBA Java Client
	Requirements
	Use

	CORBA Examples
	Overview
	Java Applications
	Building
	Applications
	CORBAModTest
	CORBATrapTest
	CORBAWalkerTest

	Java Server
	Building
	Running

	Java Applet

	Error Messages
	
	Invalid PDUs
	Socket Failure
	Low Memory Conditions
	Fatal Errors
	CORBA/RMI Errors

	Additional Resources

